InterviewSolution
Saved Bookmarks
| 1. |
Let `f(x)`be an increasing function defined on `(0,oo)`. If `f(2a^2+a+1)>f(3a^2-4a+1),`then the possible integers in the range of `a`is/are`1`(b) 2 (c)3 (d) 4A. 1B. 2C. 3D. 4 |
|
Answer» Correct Answer - 2,3,4 Since f is defined on `(0,oo) ,2a^(2)+a+1gt0` which is true as `Dlt0` Also `3a^(2)-4a+1gt0` `(3a-1)(a-1)gt0 i.e alt1//3 or agt1` As f is increasing `f(2a^(2)+a+1)gtf(3a^(2)-4a+1)` or `2a^(2)+a+1gt3a^(2)-4a+1` or `0gta^(2)-5a` or `0gta^(2)-5a` or `a(a-5)lt0 or a in (0,5)` from (1) and (2) we get `ain (0,1//3)cup(1,5)` Therefore possible integers are {2,3,4} |
|