

InterviewSolution
Saved Bookmarks
1. |
Let `f(x)={{:(,sum_(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):}` where [.] denotes the greatest integer function. The value of k for which is continuous at x=0, isA. 1B. 2C. 4D. `(1)/(2)` |
Answer» Correct Answer - A Clearly, f(x) is an even function and is given by `f(x)={{:(,(x^(2))/(2)[(1)/(|x|)] ([(1)/(|x|)]+1),x ne 0),(,k,x=0):}` If f is continous at x=0, then `underset(x to 0)lim f(x)=f(0)` `underset(x to 0)lim (x^(2))/(2)[(1)/(|x|)] ([(1)/(|x|)]+1)=k` `Rightarrow underset(x to 0)lim ([(1)/(|x|)] ([(1)/(|x|)]+1))/((1)/(|x|^(2)))=2k` `Rightarrow underset( y to oo)lim ([y]([y]+1))/(y^(2))-2k,"where "y=(1)/(|x|)` `Rightarrow underset( y to oo)lim ([y])/(y) (([y])/(y)+(1)/(y))=2k` `Rightarrow 1(1+0)=2k" "[therefore underset(x to oo)lim (x)/([x])=1]` `Rightarrow k=1` |
|