1.

Let `L`denote antilog_32 0.6 and M denote the number of positive integers whichhave the characteristic 4, when the base of log is 5, and N denote the valueof `49^((1-(log)_7 2))+5^(-(log)_5 4.)`Find the value of `(L M)/Ndot`

Answer» `L=antilog_32 0.6=(32)^(0.6)=(32)^(6/10)`
`L=8`
M from `5^4` to `5^5`
=625 to 3125
2500 integer
m=2500
N=`49^(1-log_7^2)+5^(-log_5^4)`
`=49*49^(-log_7^2)+5^(log_5^(4^(-1)`
`=49*7^(-2log_7^2)+4^(-1)`
`=49.2^(-2)+4^(-1)`
`=49*1/4+1/4`
`=49/4+1/4=50/4=25/2=N`
`(LM)/N=(8*2500*2)/25=1600`.


Discussion

No Comment Found