InterviewSolution
Saved Bookmarks
| 1. |
Let `L`denote antilog_32 0.6 and M denote the number of positive integers whichhave the characteristic 4, when the base of log is 5, and N denote the valueof `49^((1-(log)_7 2))+5^(-(log)_5 4.)`Find the value of `(L M)/Ndot` |
|
Answer» `L=antilog_32 0.6=(32)^(0.6)=(32)^(6/10)` `L=8` M from `5^4` to `5^5` =625 to 3125 2500 integer m=2500 N=`49^(1-log_7^2)+5^(-log_5^4)` `=49*49^(-log_7^2)+5^(log_5^(4^(-1)` `=49*7^(-2log_7^2)+4^(-1)` `=49.2^(-2)+4^(-1)` `=49*1/4+1/4` `=49/4+1/4=50/4=25/2=N` `(LM)/N=(8*2500*2)/25=1600`. |
|