1.

Let `vec u` be a vector coplanar with the vectors `vec a = 2 hat i + 3 hat j - hat k` and `vec b= hat j+hatk` If `vec u` is perpendicular to `vec a` and `vec u.vecb=24` then `|vecu|^2` is equal toA. 336B. 315C. 256D. 84

Answer» Correct Answer - A
If any vector x is coplanar with the vector y and z, then `x=lambday+muz`
Here, u is coplanar with a and b.
`:." "u=lambdaa+mub`
Dot product with a, we get
`u.a=lambda(a.a)+mu(b.a)implies0=14lambda+2mu" "…(i)`
`[becausea=2hati+3hatj-hatk,b=hatj+hatk,u.a=0]`
Dot product with b, we get
`u.b=lambda(a.b)+mu(b.b)`
`24=2lambda+2mu" "...(ii)[becauseu.b=24]`
Solving Eqs. (i) and (ii), we get
`lambda=-2,mu=14`
Dot product with u, we get
`|u|^(2)=lambda(u.a)+mu(u.b)`
`|u|^(2)=-2(0)+14(24)implies|u|^(2)=336`


Discussion

No Comment Found

Related InterviewSolutions