1.

The angle betweenthe lines whose direction cosines satisfy the equations `l+m+n=""0`and `l^2=m^2+n^2`is(1) `pi/3`(2) `pi/4`(3) `pi/6`(4) `pi/2`A. `(pi)/(3)`B. `(pi)/(4)`C. `(pi)/(6)`D. `(pi)/(2)`

Answer» Correct Answer - A
We know that, angle between two lines is
`cos theta=(a_(1)a_(2)+b_(1)b_(2)+c_(1)c_(2))/(sqrt(a_(1)^(2)+b_(1)^(2)+c_(1)^(2))sqrt(a_(2)^(2)+b_(2)^(2)+c_(2)^(2)))`
`l+m+n=0`
`implies" "l=-(m+n)implies(m+n)^(2)=l^(2)`
`implies" "m^(2)+n^(2)+2mn=m^(2)+n^(2)" "[becausel^(2)=m^(2)+n^(2)," given"]`
`implies" "2mn=0`
When `" "m=0`
`implies" "l=-n`
Hence, (l, m, n) is (1, 0, -1).
When `" "n=0," then "l=-m`
Hence, (l, m, n) is (1, 0, -1).
`:.costheta=(1+0+0)/(sqrt(2)xxsqrt(2))=(1)/(2)impliestheta=(pi)/(3)`


Discussion

No Comment Found

Related InterviewSolutions