InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    Let `(x_0, y_0)` be the solution of the following equations In `(2x)^(In2)=(3y)^(ln3)`and `3^(lnx)=2^(lny)` Then `x_0` isA. `(1)/(6)`B. `(1)/(3)`C. `(1)/(2)`D. 6 | 
                            
| 
                                   
Answer» Correct Answer - C We have, `(2x)^("In"2)=(3y)^("In"3)"and",3^("In"x)=2^("In"y) ` `rArrlog(2x)^("In"2)=log(3y)^("In"3)" and "log(3^("In"x))=log(2^("In"y))` `rArr log2(log2+logx)=log3(log+logy)` and, `log3 logx=log2 logy` `rArr (log2)^(2)+(log2)(logx)=(log3)^(2)+((log3)^(2)logx)/(log2)` [On eliminating logy] `rArr ((log2)^(2)-(log3)^(2))/(log2)logx=(log3)^(2)-(log2)^(2)` `rArr logx=-log2 rArrx=(1)/(2)`  | 
                            |