

InterviewSolution
Saved Bookmarks
1. |
Let `y=in (1+ cos x)^(2).` The the value of `(d^(2)y)/(dx^(2))+(2)/(e^(y//2))` equals |
Answer» `y=2" In "(1+ cos x)` `(dy)/(dx)=(-2 sin x)/(1+cos x)` `(d^(2)y)/(dx^(2))=-2[((1+cos x)cos x- sin x(-sin x))/((1+cos x)^(2))]` `=-2[(cos x +1)/((1+cos x)^(2))]=(-2)/((1+ cos x))` `"Now, "2e^(-y//2)=2cdote^(-("In "(1+cos x)^(2))/(2))=(2)/((1+cos x))` `therefore" "(d^(2)y)/(dx^(2))+(2)/(e^(y//2))=0` |
|