1.

` lim _(n to oo) ( 1/(n^(2)+1^(2)) + 1/(n^(2)+2^(2)) +...1/(2n^(2)))` equalsA. `(pi)/(6)`B. `(pi)/(4)`C. `(pi)/(3)`D. `(pi)/(2)`

Answer» Correct Answer - B
Let `S=(1^(lim))/(n_(nrarroo))((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+n^(2)))`
`S=(1)/(n)underset(nrarroo)(lim)sum_(r=1)^(n)(1)/(1+((r)/(n))^(2))`
`S=int_(0)^(1)(dx)/(1=x^(2))=[tan^(-1)x]=(pi)/(4)`


Discussion

No Comment Found