InterviewSolution
Saved Bookmarks
| 1. |
`lim_(nto oo)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n))` is equal toA. `2+2sqrt(2)`B. `2sqrt(2)-2`C. `2sqrt(2)`D. 2 |
|
Answer» Correct Answer - B Given , `lim_(ntoinfty)[(1)/(n)+(1)/(sqrt(n^(2)+n))+..+(1)/(sqrt(n^(2)+(n-1)n))]` `=lim_(n to infty)[(1)/(n)+(1)/(nsqrt(1+(1)/(n)))+..+(1)/(nsqrt(1+((n-1))/(n)))]` `=(1)/(n)lim_(ntoinfty)[1+(1)/(sqrt(1)+(1)/(n))+..+(1)/(sqrt(1+((n-1))/(n)))]` `-lim_(ntoinfty)sum_(r=0)^(n-1)((1)/(sqrt(1+(r)/(n))))(1)/(n)` `=int_(0)^(1)(dx)/(sqrt(1+x))=[2sqrt(1+x)]_(0)^(1)=2sqrt(2)-2` |
|