InterviewSolution
Saved Bookmarks
| 1. |
`lim_(x->0) (sinx-sina)/(sqrt(x)-sqrt(a))` |
|
Answer» `sinx-sina = 2sin((x-a)/2)cos((x+a)/2)` `1/(sqrtx -sqrta) = 1/(sqrtx -sqrta)**(sqrtx +sqrta)/(sqrtx + sqrta) ` `= (sqrtx + sqrta)/(x-a)` Putting these values in the given expression, `Lim_(x->a) (2sin((x-a)/2)cos((x+a)/2))/((sqrtx + sqrta)/(x-a))` `=2 Lim_(x->a) ( (sin((x-a)/2))/(2((x-a)/2))**cos((x+a)/2)**(sqrtx + sqrta))` `= 2/2 Lim_(x->a) ( (sin((x-a)/2))/(((x-a)/2))) Lim_(x->a)cos((x+a)/2)**(sqrtx + sqrta)` Applying limits, `=1*cosa*2sqrta` `=2sqrtacosa`, which is the required value. |
|