1.

`lim_(xrarr0)("cosec"x-cotx)/(x)` is equal toA. `1/2`B. 1C. `1/2`D. 1

Answer» Correct Answer - c
Given, `lim_(xto0)("cosec"x-cotx)/(x)`
`=lim_(xto0)((1/sinx)-(cosx)/(sinx))/(x) = lim_(xto0)(1-cosx)/(x.sinx)`
`=lim_(xto0)(2sin^(2)x/2)/(x.2sinx/2cosx/2) = lim_(xto0)(tanx/2)/(x)`
`=lim_(xto0)(tanx/2)/(x/2).1/2=1/2` `[therefore lim_(thetato0)(tantheta)/(theta)=1]`


Discussion

No Comment Found