InterviewSolution
Saved Bookmarks
| 1. |
निम्नलिखित फलनों का x के सापेक्ष अवकलन कीजिए- `sin[cos(x^(2))]`. |
|
Answer» माना `y=sin[cos(x^(2))]` `therefore(dy)/(dx)=d/(dx){sin[cos(x^(2))]}` `=d/(dx)(sint),[cos(x^(2))=t` रखने पर`]` `=d/(dt)(sint)(dt)/(dx)` `=costd/(dx)(cosx^(2))` `=cos[cos(x^(2))]d/(dx)(cosu),[x^(2)=u` रखने पर`]` `=cos[cos(x^(2))]d/(du)(cosu)(du)/(dx)` `=cos[cos(x^(2))](-sinu)d/(dx)(x^(2))` `=cos[cos(x^(2))](-sinx^(2)).2x` `=-2xsinx^(2)cos[cos(x^(2))]` विकल्पतः `d/(dx)[sin(cosx^(2))]` `=cos(cosx^(2))d/(dx)(cosx^(2))` `=cos(cosx^(2))(-sinx^(2))d/(dx)(x^(2))` `=cos(cosx^(2))(-sinx^(2))(2x)` `=-2xsinx^(2)cos(cosx^(2))` |
|