1.

निम्नलिखित फलनों के सांतत्यता की जाँच x = 0 पर कीजिए - (a) `f(x)={{:(e^(1//x)",",x ne 0),(0",",x = 0):}` `f(x)={{:(e^(1//x)/(1+e^(1//x))",",x ne 0),(0",",x = 0):}` (c) `f(x) = {{:(e^(1//x-1)/(e^(1//x)+1)",",x ne 0),(0",",x = 0):}`

Answer» (a) यहाँ `f(x)=e^(1//x)`
(i) `f(0)=0`
(ii) R.H.L. `=underset(x rarr 0^(+))(lim)f(x)=underset(h rarr 0)(lim)f(0+h)`
`=underset(h rarr 0)(lim)e^(1//(0+h))," "[because x = 0 + h ne 0]`
`=underset(h rarr 0)(lim)e^(1//h)`
`=e^(1//10)=e^(oo)=e^(oo)`
(iii) L.H.L. `underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(0-h)`
`=underset(h rarr 0)(lim)e^(1//(0-h))," "[because x = 0 - h ne 0]`
`=underset(h rarr 0)(lim)e^(-1//h)`
`=e^(-oo)=0," "[because e^(-oo)=0]`
`therefore" "underset(x rarr 0^(+))(lim)f(x) ne underset(x rarr 0^(-))(lim)f(x) = f(0)`
अत: `f(x), x = 0` पर संतत नहीं है ।
(b) यहाँ `f(x) = (e^(1//x))/(1+e^(1//x))`
(i) `f(0)=0`
(ii) R.H.L. `=underset(x rarr 0^(+))(lim)f(x)=underset(h rarr 0)(lim)f(0+h)`
`=underset(h rarr 0)(lim)(e^(1//(0+h)))/(1+e^(1//(0+h)))" "[because x = 0 + h ne 0]`
`=underset(h rarr 0)(lim)(e^(1//h))/(1+e^(1//h))`
`=underset(h rarr 0)(lim)(e^(1//h))/(e^(1//h)[e^(-1//h)+1])`
`=underset(h rarr 0)(lim)(1)/(e^(-1//h)+1)`
`= (1)/(e^(-oo)+1)=(1)/(0+1)=1`
(iii) L.H.L. `underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(0-h)`
`underset(h rarr 0)(lim)(e^(1//(0-h)))/(1+e^(1//(0-h)))," "[because x = 0 - h ne 0]`
`=underset(h rarr 0)(lim)(e^(-1//h))/(1+e^(-1//h))`
`=(e^(-oo))/(1+e^(-oo))=(0)/(1+0)=0," "[because e^(-oo)=0]`
`therefore" "underset(x rarr 0^(+))(lim)f(x) ne underset(x rarr 0^(-))(lim)f(x) = f(0)`
अत: f(x) बिन्दु x = 0 पर संतत नहीं है ।
(c) यहाँ `f(x) = (e^((1)/(x))-1)/(e^((1)/(x))+1)`
(i) `f(0)=0`
(ii) R.H.L. `=underset(x rarr 0^(+))(lim)f(x)=underset(h rarr 0)(lim)f(0+h)`
`=underset(h rarr 0^(+))(lim)(e^(1//0+h)-1)/(e^(1//0+h)+1)," "[because x = 0 + h ne 0]`
`=underset(h rarr 0)(lim)(e^(1//h)-1)/(e^(1//h)+1)`
`=underset(h rarr 0)(lim)(e^(1//h)[1-e^(-1//h)])/(e^(1//h)[1 + e^(-1//h)])`
`=underset(h rarr 0)(lim)(1-e^(-1//h))/(1+e^(-1//h))`
`=(1-e^(-oo))/(1+e^(-oo))=(1-0)/(1+0)=1`
(iii) L.H.L. `= underset(x rarr 0^(-))(lim)f(x)=underset(h rarr 0)(lim)f(0-h)`
`underset(h rarr 0)(lim)(e^(1//(0-h))-1)/(e^(1//0-h)+1)," "[because x = 0 - h ne 0]`
`=underset(h rarr 0)(lim)(e^(-1//h)-1)/(e^(-1//h)+1)`
`=(e^(-oo)-1)/(e^(-oo)+1)=(0-1)/(0+1)=-1`
`therefore" "underset(x rarr 0^(+))(lim)f(x) ne underset(x rarr 0^(-))(lim)f(x) ne f(0)`
अत: `f(x), x = 0` पर संतत नहीं है ।


Discussion

No Comment Found

Related InterviewSolutions