InterviewSolution
Saved Bookmarks
| 1. |
Number of solution of the equation `cos^4 2x+2sin^2 2x=17(cosx+sinx)^8,0 |
|
Answer» `cos^4 2x+2sin^2 2x=17(cosx+sinx)^8` `(cos^2 2x)^2+2(sin^2 2x)=17((cosx+sinx)^2)^4` `(1-sin^2 2x)^2+2sin^2 2x=17(cos^2x+sin^2x+2sinxcosx)^4` `1+sin^4 2x-2sin^2 2x+2sin^2 2x=17(1+sin2x)^4` `1+sin^4 2x=17(1+sin2x)^4` `1+y^2=1(1+y)^4` Let` sin2x=y` `1+y^4=17(1+y)^2(1+y)^2` `(1+y^4)=17(1+2y+y^2)` `1+y^4+17(1+4y^2+y^4+2y^2+4y^2+4y)` `16y^4+102y^2+68y^3+68y+16=0` `4y^2+17y^3+28y^2+17y+8=0` `y=-1/2` `sin2x=-1/2` `2x=3pi+pi/6` `x=7/12pi,11/12pi,19/12pi,23/12pi`. |
|