InterviewSolution
Saved Bookmarks
| 1. |
फलन `f(x) = |x - 1| + |x - 2|` के सांतत्य की विवेचना x = 1 और x = 2 पर कीजिए । |
|
Answer» दिया गया है - `f(x) = |x - 1| + |x - 2|` `rArr" "f(x)={{:(-(x-1)-(x-2)",","यदि",x lt 1),((x-1)-(x-2)",","यदि",1 le x lt 2),((x-1)+(x-2)",","यदि",x ge 2):}` `rArr" "f(x)={{:(-2x + 3",","यदि",x lt 1),(1",","यदि",1 le x lt 2),(2x-3",","यदि",x ge 2):}` x = 1 पर सांतत्यता - (i) `f(1)=1` (ii) R.H.L. `=underset(x rarr 1^(+))(lim)f(x)=underset(h rarr 0)(lim)f(1+h)` `=underset(h rarr 0)(lim)1," "[because x = 1 + h gt 1]` = 1 (iii) L.H.L. `=underset(x rarr 1^(-))(lim)f(x)=underset(h rarr 0)(lim)f(1-h)` `=underset(h rarr 0)(lim)-2(1-h)+3," "[because x = 1 - h lt 1]` `=underset(h rarr 0)(lim)1 + 2h` = 1 `therefore" ""R.H.L.=L.H.L."=f(1)` अत: f(x) बिन्दु x = 1 पर संतत है । x = 2 पर सांतत्यता - (i) `f(2)=2 xx 2 - 3 = 1` (ii) R.H.L. `=underset(x rarr 2^(+))(lim)f(x)=underset(h rarr 0)(lim)f(2+h)` `=underset(h rarr 0)(lim)2(2+h)-3," "[because x = 2 + h gt 0]` `=underset(h rarr 0)(lim)1+2h` `=1 + 0 = 1` (iii) L.H.L. `= underset(x rarr 2^(-))(lim) f(x) = underset(h rarr 0)(lim)f(2-h)` `=underset(h rarr 0)(lim)1," "[because x = 2 - h lt 2]` = 1 `therefore" ""R.H.L.=L.H.L."=f(2)` अत: f(x) बिन्दु x = 2 पर संतत है । |
|