1.

फलन `f(x)=xg(x)` और `g(x)=[(1)/(x)]`, जहाँ `[*]`,अधिकतम पूर्णांक फलन है , पर विचार कीजिए । `int_(1//3)^(1)f(x)dx` किसके बराबर है ?A. `37//72`B. `2//3`C. `17//72`D. `37//144`

Answer» Correct Answer - A
दिया है, f(x) =xg(x) तथा g(x) `=[(1)/(x)]`,
तब, `f(x)=x[(1)/(x)]`
दी गई सीमा को दो भागों में बाँटने पर , जब ,`((1)/(x)ltxlt(1)/(2))rArr2lt(1)/(x)lt3rArr[(1)/(x)]=2`
`thereforef(x)=xg(x)=2x`
जब `(1)/(2)ltxlt1`
`rArr1lt(1)/(x)lt2rArr[(1)/(x)]=1`
`thereforef(x)=xg(x)=x`
अतः `f(x)={{:(2x","(1)/(3)lexlt(1)/(2),),(x","(1)/(2)lexlt1,):}`
अब, `int_(1//3)^(1)f(x)dx=int_(1//3)^(1//2)2xdx+int_(1//2)^(1)xdx`
`=2[(x^(2))/(2)]_(1//3)^(1//2)+[(x^(2))/(2)]_(1//2)^(1)`
`=(2)/(2)[((1)/(2))^(2)-((1)/(3))^(2)]+(1)/(2)[(1)^(2)-((1)/(2))^(2)]`
`=[(1)/(4)-(1)/(9)]+(1)/(2)[1-(1)/(4)]`
`=(9-4)/(36)+(1)/(2)[(4-1)/(4)]=(5)/(36)+(3)/(8)`
`=(10+27)/(72)=(37)/(72)`


Discussion

No Comment Found