1.

फलन `sqrtx` का x के सापेक्ष प्रथम सिद्धांत से अवकलन गुणांक ज्ञात कीजिएः।

Answer» माना `y=sqrtx=(x)^(1//2)`
`therefore y+deltay=(x+deltax)^(1//2)`
अंत: `y+deltay-y=(x+deltax)^(1//2)-(x)^(1//2)`
`Rightarrow deltay=x^(1//2) [1+(deltax)/(x)]^(-1//2)-x^(1//2)=x^(1//2)[(1+(deltax)/(x))^(1//2)-1]`
`Rightarrow deltay=x^(1//2) [1+(1)/2((deltax)/(x))]+((1)/(2)((1)/(2)-1))/(2!)((deltax)/(x))^(1//2)+....oo-1]`
`[therefore` द्विपद प्रमेय से, `(1+x)^(n)=1+nx+(n(n-1))/(2!)x^(2)+....]`
`Rightarrow deltay=x^(1//2)((delta)/(x))[1+(((1)/(2)-1))/(2!)((deltax)/(x))+....oo]`
`=(1)/(2sqrtx)deltax[1+(((1)/(2)-1))/(2!)((deltax)/(x))+......]`
दोनों पक्षों को `deltax` से भाग लेकर `underset(x to 0)lim` लेने पर
`Rightarrow underset(deltax to o)lim (deltay)/(deltax)=(dy)/(dx)=underset(deltax to 0)lim (1)/(2sqrt2) (deltax)/(deltax) [1+((1)/(2)-1))/(2!) ((deltax)/(x))+....]`
`=(1)/(2sqrtx)[1+0+0+.....]`
`therefore (d)/(dx) (x^(1//2))=(1)/(2sqrtx)`


Discussion

No Comment Found