1.

Prove:`int_0^(pi//2) log|tanx| dx=0`

Answer» Let `I=int_(0)^(pi//2)log(tanx)dx`…….`(i)`
Then, `I=int_(0)^(pi//2)log[tan((pi)/(2)-x)]dx` `[:.int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx]`
or `I=int_(0)^(pi//2)log(cotx)dx=int_(0)^(pi//2)log((1)/(tanx))dx=-int_(0)^(pi//2)logtanxdx=-I`.
`:.I=-I` or `2I=0` or `I=0`.
Hence, `int_(0)^(pi//2)log(tanx)dx=0`.


Discussion

No Comment Found