InterviewSolution
Saved Bookmarks
| 1. |
Prove that :`16 cos 2pi/15 cos 4pi/15 cos 8pi/15 cos16pi/15 = 1` |
|
Answer» Here, we will use, `2sinxcosx = sin2x` Now, `L.H.S. = 16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)cos((16pi)/15)` `=16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)cos(pi+pi/15)` `=16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)(-cos(pi/15))` `=-16cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)` `=8/sin(pi/15)*2sin(pi/15)cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)` `=8/sin(pi/15)*sin((2pi)/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)` `=4/sin(pi/15)*2sin((2pi)/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)` `=4/sin(pi/15)*sin((4pi)/15)cos((4pi)/15)cos((8pi)/15)` `=2/sin(pi/15)*2sin((4pi)/15)cos((4pi)/15)cos((8pi)/15)` `=2/sin(pi/15)*sin((8pi)/15)cos((8pi)/15)` `=sin((16pi)/15)/(sin((pi)/15))` `=sin(pi+pi/15)/(sin((pi)/15))` `=(sin((pi)/15))/(sin((pi)/15))` `=1 = R.H.S.` |
|