InterviewSolution
Saved Bookmarks
| 1. |
Prove that A (2,-1) B (3,4) C (-2,3) D (-3,-2) are the vertices of rhombus ABCD a square? |
|
Answer» Apply distance formula....if all the distances comes equal then it is a square or rhombus....and if the diagonals comes equal then it is square and if diagonals are not equal then it is rhombus By using diatance formula,√ [ (x2\xa0- x1)2\xa0= (y2\xa0- y1)2\xa0]AB = √ ( 3 - 2)2\xa0+ ( 4 + 1)2\xa0=√ 12\xa0+ 52\xa0=√ 1 + 25 =√26 ...1BC =√ ( -2 -3)2\xa0+ ( 3 - 4)2\xa0=√ 25 = 1 =√26 ...2CD =√ ( -3 + 2)2\xa0+ ( -2 -3)2\xa0=√ 25 + 1 =√26 ...3DA =√(2 + 3)2\xa0+ ( -1 + 2)2\xa0=√ 25 + 1 =√ 26 ...4from 1, 2, 3 and 4ABCD is a rhombus.For a rhombus to be a square, diagonals must be equalSo we need to prove that AB = CDAC =√( -2 - 2 )2\xa0+ (3 + 1)2\xa0=√ (-4)2\xa0+ (4)2\xa0=√ 16 + 16 =√32BD =√ (-3 - 3)2\xa0+ (-2 - 4)2\xa0=√ (-6)2\xa0+ (-6)2\xa0= √ 36 + 36 = √72Since AC is not equal to BD, it is not a square Use distance formula...... Dono, diagonal ka length equal hoga Kiske vertices prove karne hai. ? Rhombus or square? |
|