InterviewSolution
Saved Bookmarks
| 1. |
prove that `a^2sin2B+b^2sin2A=4Delta` |
|
Answer» `L.H.S. = a^2sin2B+b^2sin2A` `= (2RsinA)^2(2sinBcosB)+(2RsinB)^2(2sinAcosA)` `=8R^2sinAsinB(sinAcosB+sinBcosA)` `=8R^2sinAsinB(sin(A+B))` `=8R^2sinAsinB(sin(pi-C))` `=8R^2sinAsinBsinC` Now, we know, `Delta = 2R^2sinAsinBsinC ` `:. 8R^2sinAsinBsinC = 4Delta = R.H.S.` |
|