

InterviewSolution
Saved Bookmarks
1. |
prove that `cos^3(2x)+3cos2x=4(cos^6x-sin^6x)` |
Answer» `L.H.S. = cos^3(2x) +3cos2x` `=cos2x(cos^2 (2x) +3)` `=cos2x((2cos^2x-1)^2 +3)` `=cos2x((4cos^4x+1 - 4cos^2x) +3)` `=cos2x(4cos^4x+4 - 4cos^2x)` `=4(2cos^2x -1)(cos^4x+1 - cos^2x)` `=4(2cos^6x + 2cos^2x -2cos^4x - cos^4x- 1 + cos^2x)` `=4(2cos^6x-3cos^4x+3cos^2x-1)` `=4(2cos^6x+3cos^2x(1-cos^2x) - 1)` `=4(2cos^6x+3cos^2xsin^2x - (sin^2x+cos^2x)^3)` `=4(2cos^6x+3cos^2xsin^2x - sin^6x-cos^6x - 3sin^2xcos^2x (sin^2x+cos^2x))` `=4(cos^6x - sin^6x+3cos^2xsin^2x-3cos^2xsin^2x)` `=4(cos^6x - sin^6x) = R.H.S.` |
|