InterviewSolution
Saved Bookmarks
| 1. |
Prove that `(cos7x+cos5x)/(sin7x-sin5x)=cotx`. |
|
Answer» Here, we will use the following formulas: `sin A - sin B = 2sin((A-B)/2)cos((A+B)/2)` `cos A + cos B = 2cos((A-B)/2)cos((A+B)/2)` `L.H.S. = (cos7x+cos5x)/(sin7x-sin5x)` `=(2cos((7x+5x)/2)cos((7x-5x)/2))/(2cos((7x+5x)/2)sin((7x-5x)/2))` `=cos(x)/sin(x)=cotx=R.H.S.` |
|