1.

Prove that `cot12^(@)cot38^(@)cot52^(@)cot78^(@)cot60^(@)=(1)/(sqrt3)`

Answer» `cot12^(@)cot38^(@)cot52^(@)cot78^(@)cot60^(@)`
`=(cot12^(@)cot78^(@))(cot38^(@)cot52^(@))cot60^(@)`
`={cot12^(@)cot(90^(@)-12^(@))}{cot38^(@)cot(90^(@)-38^(@))}cot60^(@)`
`=(cot12^(@)tan12^(@))(cot38^(@)tan38^(@))cot60^(@)`.
`=1xx1xx(1)/(sqrt3)=(1)/(sqrt3)`
Hence `cot12^(@)cot38^(@)cot52^(@)cot78^(@)cot60^(@)=(1)/(sqrt3)`


Discussion

No Comment Found