

InterviewSolution
Saved Bookmarks
1. |
prove that `(d(sec^(-1)x))/(dx) =1/(|x|(sqrt(x^2-1)))` |
Answer» Let `y=sec^(-1)x`, where `x in R-[-1,1]` and `y in [0,pi]-{(pi)/(2)}`. Then, `x = secy` `rArr (dx)/(dy)= secy tan y gt 0` `rArr(dy)/(dx)=(1)/(secy tany)=(1)/(secy.sqrt(sec^(2)y-1))` `rArr(dy)/(dx)=(1)/(|x|sqrt(x^(2)-1))` Hence, `(d)/(dx)(sec^(-1)x)=(1)/(|x|sqrt(x^(2)-1)).` |
|