1.

prove that `(d(sec^(-1)x))/(dx) =1/(|x|(sqrt(x^2-1)))`

Answer» Let `y=sec^(-1)x`, where `x in R-[-1,1]` and `y in [0,pi]-{(pi)/(2)}`. Then,
`x = secy`
`rArr (dx)/(dy)= secy tan y gt 0`
`rArr(dy)/(dx)=(1)/(secy tany)=(1)/(secy.sqrt(sec^(2)y-1))`
`rArr(dy)/(dx)=(1)/(|x|sqrt(x^(2)-1))`
Hence, `(d)/(dx)(sec^(-1)x)=(1)/(|x|sqrt(x^(2)-1)).`


Discussion

No Comment Found