1.

Prove that  \(f(x) = \begin{cases} sin\frac {1}{x}, & \quad \text{when x≠0;} \text{}\\ 0, & \quad \text{when x=0} \end{cases}\)  is discontinuous at x=0

Answer»

  \(\lim\limits_{x \to0} \)  sin\(\frac{1}{x}\) = 0

 sin\(\frac{1}{x}\) is bounded function between -1 and +1. 

Also, f(0)=0

Since,   \(\lim\limits_{x \to0} \) f(x) = f(0) 

Hence, f is a continuous function.



Discussion

No Comment Found

Related InterviewSolutions