1.

Prove that `int_- 1^1log((2-x)/(2+x))^(20)dx=0`

Answer» Let `f(x)=log((2-x)/(2+x))`.
Then, `f(-x)=log((2+x)/(2-x))=log((2-x)/(2+x))^(-1)=-log((2-x)/(2+x))=-f(x)`.
`:.f(x)` is an odd function of `x`.
But , we know that `int_(-a)^(a)f(x)dx=0`, when `f(x)` I an odd function of `x`.
`:.int_(-1)^(1)log((2-x)/(2+x))dx=0`.


Discussion

No Comment Found