InterviewSolution
Saved Bookmarks
| 1. |
Prove that `int_- 1^1log((2-x)/(2+x))^(20)dx=0` |
|
Answer» Let `f(x)=log((2-x)/(2+x))`. Then, `f(-x)=log((2+x)/(2-x))=log((2-x)/(2+x))^(-1)=-log((2-x)/(2+x))=-f(x)`. `:.f(x)` is an odd function of `x`. But , we know that `int_(-a)^(a)f(x)dx=0`, when `f(x)` I an odd function of `x`. `:.int_(-1)^(1)log((2-x)/(2+x))dx=0`. |
|