1.

Prove that: `sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2)sinA`

Answer» `L.H.S. = sin^2(pi/8+A/2) - sin^2(pi/8-A/2)`
`=(sin(pi/8)cos(A/2)+cos(pi/8)sin(A/2))^2-(sin(pi/8)cos(A/2)-cos(pi/8)sin(A/2))^2`
As `a^2-b^2 = (a+b)(a-b)`, so it becomes
`=(sin(pi/8)cos(A/2)+cos(pi/8)sin(A/2)+sin(pi/8)cos(A/2)-cos(pi/8)sin(A/2))(sin(pi/8)cos(A/2)-cos(pi/8)sin(A/2)-sin(pi/8)cos(A/2)+cos(pi/8)sin(A/2))`
`=4(sin(pi/8)cos(A/2)(cos(pi/8)sin(A/2))`
`=(2sin(pi/8)cos(pi/8))(2sin(A/2)cos(A/2))`
`=sin(2*pi/8)sin(2*A/2)`
`=sinpi/4sinA`
`=1/sqrt2sinA = R.H.S.`


Discussion

No Comment Found