InterviewSolution
Saved Bookmarks
| 1. |
If `2tanbeta+cotbeta=tanalpha`, prove that `cotbeta=2tan(alpha-beta)dot` |
|
Answer» `R.H.S. = 2tan(alpha-beta) = (2(tanalpha - tanbeta))/(1+tanalphatanbeta)` `=(2(2tanbeta+cotbeta- tanbeta))/(1+(2tanbeta+cotbeta)tanbeta)` `=(2(tanbeta+cotbeta))/(1+(2tan^2beta+cotbetatanbeta)` `=(2(tanbeta+1/tanbeta))/(1+(2tan^2beta+1/tanbetatanbeta)` `=(2((tan^2beta+1)/tanbeta))/(2(tan^2beta+1))` `=1/tanbeta = cotbeta = L.H.S.` |
|