1.

If `cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-3/2`, prove that`cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0`

Answer» `cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha) = -3/2`
`=>2(cosalphacosbeta+sinalphasinbeta)+2(cosbetacosgamma+sinbetasingamma)+2(cosalphacosgamma+sinalphasingamma) = -3`
`=>2(cosalphacosbeta+cosbetacosgamma+cosalphacosgamma)+2(sinalphasinbeta+sinbetasingamma+sinalphasingamma)+3 = 0`
`=>2(cosalphacosbeta+cosbetacosgamma+cosalphacosgamma)+2(sinalphasinbeta+sinbetasingamma+sinalphasingamma)+(cos^2alpha+sin^2alpha)+(cos^2beta+sin^2beta)+(cos^2gamma+sin^2gamma) = 0`
`=>(cos^2alpha+cos^2beta+cos^2gamma +2(cosalphacosbeta+cosbetacosgamma+cosalphacosgamma))+(sin^2alpha+sin^2beta+sin^2gamma +2(sinalphasinbeta+sinbetasingamma+sinalphasingamma))=0`
`=>(cosalpha+cosbeta+cosgamma)^2+(sinalpha+sinbeta+singamma)^2 = 0`
`a^2+b^2 = 0` is possible onle when `a = b = 0.`
`:. cosalpha+cosbeta+cosgamma = sinalpha+sinbeta+singamma= 0`


Discussion

No Comment Found