1.

Prove that:`sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot`

Answer» `R.H.S. = cos^2(A-B)+cos^2B-2cos(A-B)cosAcosB`
`=cos^2B+cos(A-B)[cos(A-B)-2cosAcosB]`
`=cos^2B+cos(A-B)[cosAcosB+sinAsinB-2cosAcosB]`
`=cos^2B+cos(A-B)[-cosAcosB+sinAsinB]`
`=cos^2B-cos(A-B)[cosAcosB-sinAsinB]`
`=cos^2B-cos(A-B)[cos(A+B)]`
Now, we know, `cos(A-B)cos(A+B) = cos^2A-sin^2B`
So, it becomes,
`=cos^2B-cos^2A+sin^2B`
`=cos^2B+sin^2B-cos^2A`
`=1-cos^2A`
`=sin^2A = L.H.S.`


Discussion

No Comment Found