InterviewSolution
Saved Bookmarks
| 1. |
Prove that :`sintheta/cos[3theta]+sin[3theta]/cos[9theta]+sin[9theta]/cos[27theta]=1/2[tan[27theta]-tan[theta]]` |
|
Answer» `tan3theta=tantheta=(sin3theta)/cos3theta-sintheta/costheta` `=(sin3thetatantheta-sinthetacos3theta)/(cos3theta*costheta)` `=sin(3theta-theta)/(cos3theta*costheta)` `=(2sintheta)/(cos3theta)` `sintheta/cos3theta=1/2(tan3theta-tantheta)-(1)` `(sin3theta)/(cos9theta)=1/2(tan9theta-tan3theta)-(2)` `(sin9theta)/(cos27theta)=1/2(tan27theta-tan9theta)-(3)` adding equation 1,2 and3 `sintheta/(cos3theta)+(sin3theta)/(cos9theta)+(sin9theta)/(cos27theta)=1/2(tan27theta-tantheta)`. |
|