InterviewSolution
Saved Bookmarks
| 1. |
Prove that :`sintheta/(cos(3theta)) + (sin3theta ) /(cos9theta) + (sin 9theta) /(cos27theta) =1/2( tan27theta-tantheta)` |
|
Answer» `tan3theta - tan theta =( sin3theta)/(cos3 theta) - sin theta/cos theta` `= (sin3thetacostheta - sinthetacos3theta)/(cos3thetacos theta)` `=sin(3theta-theta)/(cos3thetacos theta)` `=sin(2theta)/(cos3thetacos theta)` `=(2sinthetacostheta)/(cos3thetacos theta) = (2sintheta)/(cos3theta)` `:. 1/2(tan3theta - tan theta) = (sintheta)/(cos3theta)` Similarly, `1/2(tan9theta - tan 3theta) = (sin3theta)/(cos9theta)` Similarly, `1/2(tan27theta - tan 9theta) = (sin9theta)/(cos27theta)` `:. (sintheta)/(cos3theta)+ (sin3theta)/(cos9theta) +(sin3theta)/(cos9theta) = 1/2(tan3theta - tan theta+tan9theta - tan 3theta+tan27theta - tan 9theta)` `=> (sintheta)/(cos3theta)+ (sin3theta)/(cos9theta) +(sin3theta)/(cos9theta) = 1/2(tan27 theta - tantheta)` |
|