1.

prove that : `tan(alpha)+2 tan(2alpha) +4(tan4alpha)+8cot(8alpha) = cot(alpha)`

Answer» We know that, `cot theta-tantheta=(1-tan^(2)theta)/(tan theta)=2((1-tan^(2)theta)/(2tantheta))=2cot 2 theta...(i)`
LHS = `tan alpha + 2 tan 2 alpha + 4 tan 4 alpha + 8 cot 8 alpha`
`=-(cotalpha - tan alpha - 2 tan 2 alpha - 4tan 4 alpha)+8cot 8 alpha + cot alpha`
`=-(2cot 2alpha-2tan 2 alpha - 4tan 4 alpha)+8cot 8alpha + cotalpha" [from Eq. (i)]"`
`=-(2(2cot 4 alpha)-4 tan 4 alpha)+8cot 8 alpha+cot alpha " [from Eq. (i)]"`
`=-4(cot4 alpha-tan 4alpha)+8cot8alpha + cot alpha`
`=-8cot 8 alpha +8cot 8 alpha + cot alpha " [from Eq. (i)]"`
`=cot alpha = RHS`


Discussion

No Comment Found