

InterviewSolution
Saved Bookmarks
1. |
Prove the following identities :\(\begin{vmatrix}a & b& c \\[0.3em]a-b & b-c & c-a \\[0.3em]b+c & c+a & a+b\end{vmatrix}\) = a3 + b3 + c3 + 3abc |
Answer» \(\begin{vmatrix}a & b& c \\[0.3em]a-b & b-c & c-a \\[0.3em]b+c & c+a & a+b\end{vmatrix}\) L.H.S = \(\begin{vmatrix}a & b& c \\[0.3em]a-b & b-c & c-a \\[0.3em]b+c & c+a & a+b\end{vmatrix}\) Apply C1→C1 + C2 + C3 = (a + b + c) \(\begin{vmatrix}1 & b& c \\[0.3em]0 & b-c & c-a \\[0.3em]2 & c+a & a+b\end{vmatrix}\) Applying, R3→R3 – 2R1 = (a + b + c) \(\begin{vmatrix}1 & b& c \\[0.3em]0 & b-c & c-a \\[0.3em]0 & c+a-2b & a+b-2c\end{vmatrix}\) = (a + b + c)[(b – c)(a + b – 2c) – (c – a)(c + a – 2b)] = a3 + b3 + c3 – 3abc As, L.H.S = R.H.S Hence, proved. |
|