1.

Prove the following identities :\(\begin{vmatrix} b+c & a-b& a \\[0.3em] c+a & b-c & b \\[0.3em] a+b & c-a & c \end{vmatrix}\) = 3abc - a3 - b3 - c3

Answer»

L.H.S = \(\begin{vmatrix} b+c & a-b& a \\[0.3em] c+a & b-c & b \\[0.3em] a+b & c-a & c \end{vmatrix}\)

As,

|A| = |A|T

So,

\(\begin{vmatrix} b+c & c + a& a+b \\[0.3em] a-b & b-c & c-a \\[0.3em] a &b & c \end{vmatrix}\)

If any two rows or columns of the determinant are interchanged, then determinant changes its sign

\(-\begin{vmatrix}a &b & c \\[0.3em] a-b & b-c & c-a \\[0.3em]b+c & c + a& a+b \end{vmatrix}\)

Apply C1→C1 + C2 + C3

\(-\begin{vmatrix}a+b+c & b& c \\[0.3em] 0 & b-c & c-a \\[0.3em] 2(a+b+c) &c+a & a+b \end{vmatrix}\)

Taking (a + b + c) common from C1 we get,

= - (a + b + c)\(\begin{vmatrix}1 & b& c \\[0.3em] 0 & b-c & c-a \\[0.3em] 2&c+a & a+b \end{vmatrix}\)

Applying,

R3→R3 – 2R1

 = - (a + b + c)\(\begin{vmatrix}1 & b& c \\[0.3em] 0 & b-c & c-a \\[0.3em] 0&c+a-2b & a+b-2c \end{vmatrix}\)

= – (a + b + c)[(b – c)(a + b – 2c) – (c – a)(c + a – 2b)] 

= 3abc – a3 – b3 – c3 

As, 

L.H.S = R.H.S, 

hence proved.



Discussion

No Comment Found