

InterviewSolution
1. |
Prove the following identities :\(\begin{vmatrix} b+c & a-b& a \\[0.3em] c+a & b-c & b \\[0.3em] a+b & c-a & c \end{vmatrix}\) = 3abc - a3 - b3 - c3 |
Answer» L.H.S = \(\begin{vmatrix} b+c & a-b& a \\[0.3em] c+a & b-c & b \\[0.3em] a+b & c-a & c \end{vmatrix}\) As, |A| = |A|T So, \(\begin{vmatrix} b+c & c + a& a+b \\[0.3em] a-b & b-c & c-a \\[0.3em] a &b & c \end{vmatrix}\) If any two rows or columns of the determinant are interchanged, then determinant changes its sign \(-\begin{vmatrix}a &b & c \\[0.3em] a-b & b-c & c-a \\[0.3em]b+c & c + a& a+b \end{vmatrix}\) Apply C1→C1 + C2 + C3 \(-\begin{vmatrix}a+b+c & b& c \\[0.3em] 0 & b-c & c-a \\[0.3em] 2(a+b+c) &c+a & a+b \end{vmatrix}\) Taking (a + b + c) common from C1 we get, = - (a + b + c)\(\begin{vmatrix}1 & b& c \\[0.3em] 0 & b-c & c-a \\[0.3em] 2&c+a & a+b \end{vmatrix}\) Applying, R3→R3 – 2R1 = - (a + b + c)\(\begin{vmatrix}1 & b& c \\[0.3em] 0 & b-c & c-a \\[0.3em] 0&c+a-2b & a+b-2c \end{vmatrix}\) = – (a + b + c)[(b – c)(a + b – 2c) – (c – a)(c + a – 2b)] = 3abc – a3 – b3 – c3 As, L.H.S = R.H.S, hence proved. |
|