1.

Resolve `(1)/(x^(2)-7x+12)` into partical fractions.A. `(1)/(x-4)-(1)/(x-3)`B. `(1)/(x-3)+(1)/(x-4)`C. `(2)/(x-4)-(1)/(x-3)`D. `(1)/(x+3)-(1)/(x+4)`

Answer» `(1)/(x^(2)-7x+12)=(1)/((x-3)(x-4))`
Let `(1)/((x-3)(x-4))=(A)/(x-3)+(B)/(x-4)`…..`(1)`
`(1)/((x-3)(x-4))=(A(x-4)+B(x-3))/((x-3)(x-4))`
Consider , `A(x-4)+B(x-3)=1`
Put `x=4`, we get `B=1`
Put `x=3`, we get `-A=1`
`implies A=-1`
Substitute these value in Eq. `(1)`, we get
`(1)/((x-3)(x-4))=(1)/(x-4)-(1)/(x-3)`.


Discussion

No Comment Found

Related InterviewSolutions