Saved Bookmarks
| 1. |
Resolve `(3x^(2)+7)/(x^(4)-3x^(2)+2)` into partical fractions.A. `(10)/(x^(2)-2)+(5)/(x-1)-(5)/(x+1)`B. `(13)/(x^(2)-2)+(5)/(x+1)-(5)/(x-1)`C. `(5)/(x^(2)-2)+(10)/(x-1)-(10)/(x+1)`D. `(5)/(x-1)-(5)/(x+1)-(13)/(x^(2)-2)` |
|
Answer» Let `x^(2)=p`, then `(3x^(2)+7)/(x^(4)-3x^(2)+2)=(3p+7)/(p^(2)-3p+2)` Let `(3p+7)/(p^(2)-3p+2)=(A)/(p-1)+(B)/(p-2)` `implies(3p-7)/((p-1)(p-2))=(A(p-2)+B(p-1))/((p-1)(p-2))` Consider, `3p+7=A(p-2)+B(p-1)` Put `p=1`, `-A=10impliesA=-10` `p=2`, `B=13` `(3p+7)/(p^(2)-3p+2)=(13)/(p-2)-(10)/(p-1)` But `p=x^(2)` , `:. (3x^(2)+7)/(x^(4)-3p^(2)+2)=(13)/(x^(2)-2)-(10)/(x^(2)-1)` `=(13)/(x^(2)-2)-5[(1)/(x-1)-(1)/(x+1)]` `=(13)/(x^(2)-2)+(5)/(x+1)-(5)/(x-1)`. |
|