Saved Bookmarks
| 1. |
Resolve `(2x^(2)+8x+13)/((x+1)^(4))` into partical fractions.A. `(2)/((x+1)^(2))+(5)/((x+1)^(3))+(7)/((x+1)^(4))`B. `(1)/((x+1)^(2))+(5)/((x+1)^(3))+(7)/((x+1)^(4))`C. `(2)/((x+2)^(2))+(4)/((x+1)^(3))+(7)/((x+1)^(4))`D. `(4)/((x+1)^(2))+(5)/((x+1)^(3))+(7)/((x+1)^(4))` |
|
Answer» Given , `(2x^(2)+8x+13)/((x+1)^(4))` Let `y=x+1impliesx=y=-1` `=(2(y-1)^(2)+8(y-1)+13)/(y^(4))` `=(2y^(2)+2-4y+8y-8+13)/(y^(4))` `=(2y^(2)+4y+7)/(y^(4))=(2)/(y^(2))+(4)/(y^(3))+(7)/(y^(4))` `=(2)/((x+1)^(2))+(4)/((x+1)^(3))+(7)/((x+1)^(4))`. |
|