1.

Resolve `(6x^(2)-14x+6)/(x(x-1)(x-2))` into partical fractions.A. `(2)/(x)+(3)/(x-1)+(1)/(x-2)`B. `(3)/(x)+(2)/(x-1)+(1)/(x-2)`C. `(1)/(x)+(2)/(x-1)+(3)/(x-2)`D. `(1)/(x)+(3)/(x-1)+(2)/(x-2)`

Answer» Let `(6x^(2)-14x+6)/(x(x-1)(x-2))=(A)/(x)+(B)/(x-1)+(C )/(x-2)`
`(6x^(2)-14x+6)/(x(x-1)(x-2))`
`=(A(x-1)(x-2)+Bx(x-2)+Cx(x-1))/(x(x-1)(x-2))`
`6x^(2)-14x+6`
`=A(x-1)(x-2)+Bx(x-2)+C(x-1)x`
Put `x=1`,
`6-14+6=B1(1-2)implies-2=-B`
`impliesB=2`.
Put `x=2`, `6(2)^(2)-14(2)+6=C(2-1)(2)`
`2=2C`
`1=C`
Put `x=0`, `6=A(-1)(-2)impliesA=3`
`:.(6x^(2)-14x+6)/(x(x-1)(x-2))=(3)/(x)+(2)/(x-1)+(1)/(x+2)`.


Discussion

No Comment Found

Related InterviewSolutions