Saved Bookmarks
| 1. |
Resolve `(6x^(2)-14x+6)/(x(x-1)(x-2))` into partical fractions.A. `(2)/(x)+(3)/(x-1)+(1)/(x-2)`B. `(3)/(x)+(2)/(x-1)+(1)/(x-2)`C. `(1)/(x)+(2)/(x-1)+(3)/(x-2)`D. `(1)/(x)+(3)/(x-1)+(2)/(x-2)` |
|
Answer» Let `(6x^(2)-14x+6)/(x(x-1)(x-2))=(A)/(x)+(B)/(x-1)+(C )/(x-2)` `(6x^(2)-14x+6)/(x(x-1)(x-2))` `=(A(x-1)(x-2)+Bx(x-2)+Cx(x-1))/(x(x-1)(x-2))` `6x^(2)-14x+6` `=A(x-1)(x-2)+Bx(x-2)+C(x-1)x` Put `x=1`, `6-14+6=B1(1-2)implies-2=-B` `impliesB=2`. Put `x=2`, `6(2)^(2)-14(2)+6=C(2-1)(2)` `2=2C` `1=C` Put `x=0`, `6=A(-1)(-2)impliesA=3` `:.(6x^(2)-14x+6)/(x(x-1)(x-2))=(3)/(x)+(2)/(x-1)+(1)/(x+2)`. |
|