Saved Bookmarks
| 1. |
Resolve `(10)/(x^(2)-25)` into partical fractions.A. `(1)/(x-5)-(1)/(x+5)`B. `(1)/(x-5)+(2)/(x+5)`C. `(1)/(x+5)+(1)/(x-5)`D. `(1)/(x-5)-(2)/(x+5)` |
|
Answer» Let `(10)/(x^(2)-25)=(A)/(x-5)+(B)/(x+5)` `(10)/(x^(2)-25)=(A(x+5)+B(x-5))/((x-5)(x+5))` Consider, `A(x+5)+B(x-5)=10` Put `x=5`, `10A=10impliesA=1` Put `x=-5`, `-10B=10impliesB=-1` `:. (10)/(x^(2)-5)=(1)/(x-5)-(1)/(x+5)` |
|