1.

Resolve `(2x+1)/((x+3)(x^(2)+1)^(2))` into partial fractions.

Answer» Let, `(2x+1)/((x+3)(x^(2)+1)^(2))=(A)/(x+3)+(Bx+C)/(x^(2)+1)+(Dx+E)/((x^(2)+1)^(2))`
`implies2x+1=A(x^(2)+1)^(2)+(Bx+C)(x+3)(x^(2)+1)+(Dx+E)(x+3)`………`(1)`
Put `x=-3` in Eq. `(1)`, we have
`-5=100AimpliesA=(-1)/(20)`
Comparing the coefficients of `x^(4)` on either sides of Eq. `(1)`, we have
`0=A+BimpliesB=(1)/(20)`
Compairng the coefficients of `x^(3)` on either sides of Eq. `(1)`, we have
`0=3B+CimpliesC=(-3)/(20)`
Put `x=0` in Eq. `(1)`, we have
`implies1=A+3C+3Eimplies3E=1+(1)/(20)+(9)/(20)`
`impliesE=(1)/(2)`
By putting `x=1` in Eq. `(1)`, we have
`3=4A+8B+8C+4D+4E`
`3=(-4)/(20)+(8)/(20)+8((-3)/(20))+4D+((1)/(2))`
`3+(4)/(20)-(8)/(20)+(24)/(20)-2=4D`
`D=(2)/(4)=(1)/(2)`
`:.(2x+1)/((x+3)(x^(2)+1)^(2))=((-1)/(20))/(x+3)+((x)/(20)-(3)/(20))/(x^(2)+1)+((1)/(2)x+(1)/(2))/((x^(2)+1)^(2))`
`=(-1)/(20(x+3))+((x-3))/(20(x^(2)+1))+((x+1))/(2(x^(2)+1)^(2))`


Discussion

No Comment Found

Related InterviewSolutions