1.

Resolve `(x)/((x-2)(x^(2)+3)^(2))` into partial fractions.A. `(1)/(49)[(2)/(x-2)-(2x+4)/(x^(2)+3)+(12-2x)/((x^(2)+3)^(2))]`B. `(1)/(49)[(2)/(x-2)-(2x+4)/(x^(2)+3)-(12-2x)/((x^(2)+3)^(2))]`C. `(1)/(49)[(2)/(x-2)+(2x+4)/(x^(2)+3)-(12-2x)/((x^(2)+3)^(2))]`D. `(1)/(49)[(2)/(x-2)-(2x+4)/(x^(2)+3)+(21-14x)/((x^(2)+3)^(2))]`

Answer» Let `(x)/((x-2)(x^(2)+3)^(2))=(A)/(x-2)+(Bx+C)/(x^(2)+3)+(Dx+E)/((x^(2)+3)^(2))`
Consider,
`x=A(x^(2)+3)^(2)+(Bx+C)(x-2)(x^(2)+3)+(Dx+E)(X-2)`
Put `x=2`, we get
`A=(2)/(49)`
Comparing the coefficients of `x^(4)`, `x^(3)`, `x^(2)` and costant terms , we get
`A+B=0implies:.B=-(2)/(49)`
`-2B+C=0impliesC=-(4)/(49)`
`6A+3B-2C+D=0`
`implies:.D=(-14)/(49)`
and `-6C-2E+9A=0`
`E=(21)/(49)`
`(x)/((x-2)(x^(2)+3)^(2))`
`=((2)/(49))/(x-2)+((-2)/(49)x-(4)/(49))/(x^(2)+3)+((-14)/(49)x+(21)/(49))/((x^(2)+3)^(2))`
`=(2)/(49(x-2))-(2x+4)/(49(x^(2)+3))+(21-14x)/(49(x^(2)+3)^(2))`


Discussion

No Comment Found

Related InterviewSolutions