Saved Bookmarks
| 1. |
Resolve `(x)/((x-2)(x^(2)+3)^(2))` into partial fractions.A. `(1)/(49)[(2)/(x-2)-(2x+4)/(x^(2)+3)+(12-2x)/((x^(2)+3)^(2))]`B. `(1)/(49)[(2)/(x-2)-(2x+4)/(x^(2)+3)-(12-2x)/((x^(2)+3)^(2))]`C. `(1)/(49)[(2)/(x-2)+(2x+4)/(x^(2)+3)-(12-2x)/((x^(2)+3)^(2))]`D. `(1)/(49)[(2)/(x-2)-(2x+4)/(x^(2)+3)+(21-14x)/((x^(2)+3)^(2))]` |
|
Answer» Let `(x)/((x-2)(x^(2)+3)^(2))=(A)/(x-2)+(Bx+C)/(x^(2)+3)+(Dx+E)/((x^(2)+3)^(2))` Consider, `x=A(x^(2)+3)^(2)+(Bx+C)(x-2)(x^(2)+3)+(Dx+E)(X-2)` Put `x=2`, we get `A=(2)/(49)` Comparing the coefficients of `x^(4)`, `x^(3)`, `x^(2)` and costant terms , we get `A+B=0implies:.B=-(2)/(49)` `-2B+C=0impliesC=-(4)/(49)` `6A+3B-2C+D=0` `implies:.D=(-14)/(49)` and `-6C-2E+9A=0` `E=(21)/(49)` `(x)/((x-2)(x^(2)+3)^(2))` `=((2)/(49))/(x-2)+((-2)/(49)x-(4)/(49))/(x^(2)+3)+((-14)/(49)x+(21)/(49))/((x^(2)+3)^(2))` `=(2)/(49(x-2))-(2x+4)/(49(x^(2)+3))+(21-14x)/(49(x^(2)+3)^(2))` |
|