1.

Show that each of the following systems of linear equations is inconsistent : 3x + y = 5 – 6x – 2y = 9

Answer»

Given : - 

Two equation 3x + y = 5 and – 6x – 2y = 9 

Tip : - We know that 

For a system of 2 simultaneous linear equation with 2 unknowns 

(i) If D ≠ 0, then the given system of equations is consistent and has a unique solution given by

 x = \(\frac{D_1}{D}\), y = \(\frac{D_2}{D}\)

(ii) If D = 0 and D1 = D2 = 0, then the system is consistent and has infinitely many solution. 

(iii) If D = 0 and one of D1 and D2 is non – zero, then the system is inconsistent.

Now, 

We have, 

3x + y = 5

– 6x – 2y = 9 

Lets find D

⇒ D = \(\begin{vmatrix} 3& 1 \\[0.3em] -6 &-2 \\[0.3em] \end{vmatrix}\) 

⇒ D = – 6 – 6 

⇒ D = 0

Again, 

D1 by replacing 1st column by B 

Here,

B = \(\begin{vmatrix} 5 \\[0.3em] 9\\[0.3em] \end{vmatrix}\)

⇒ D1\(\begin{vmatrix} 5& 1 \\[0.3em] 9 &-2 \\[0.3em] \end{vmatrix}\) 

⇒ D1 = – 10 – 9 

⇒ D1 = – 19 

And, 

D2 by replacing 2nd column by B 

Here,

B = \(\begin{vmatrix} 5 \\[0.3em] 9\\[0.3em] \end{vmatrix}\)

⇒ D2\(\begin{vmatrix} 3& 5 \\[0.3em] -6 &9 \\[0.3em] \end{vmatrix}\) 

⇒ D2 = 27 + 30 

⇒ D2 = 57 

So, here we can see that 

D = 0 and D1 and D2 are non – zero 

Hence the given system of equation is inconsistent.



Discussion

No Comment Found