

InterviewSolution
Saved Bookmarks
1. |
Show that `f(x)=|x|` is continuous at x=0 |
Answer» `f(x)=|x|={:{(x, xge 0),(-x,x lt 0):}` Now f(0)=0 `R.H.L = underset(xrarr0^+)(limf(x))=underset(hrarr0)(lim)f(0+h)` `=underset(hrarr0)(lim)h=0` `L.H.L=underset(xrarr0^-)(lim)f(x)=underset(hrarr0)limf(0-h)` `=underset(hrarr0)(lim){-(0-h)}=0` `therefore` R.H.L = f(0)=L.H.L `therefore` f(x) is constinuous at x=0 Hence proved. |
|