1.

Show that `int_(-pi//2)^(pi//2)sin^(7)xdx=0`.

Answer» Let `f(x)=sin^(7)x`. Then,
`f(-x)=[sin(-x)]^(7)=-sin^(7)x=-f(x)`.
`:.f(x)` is an odd function of `x`.
But, `int_(-a)^(a)f(x)dx=0`, when `f(x)` is odd
`:.int_(-pi//2)^(pi//2)sin^(7)xdx=0`.


Discussion

No Comment Found