1.

Show that the function `f(x)=2x-|x|`is continuous at `x=0`.

Answer» we have, ` f(0) =(2xx 0) -|0|=0`
`lim_( x to 0+) f(x) = lim_(h to 0) f( 0+h) `
` lim_(h to 0) ( 2h-|h|) = lim_( h to 0) ( 2h-h) = lim_( h to 0) h =0`
` lim_(x to 0-) f(x) - lim_(hto0) f( 0-h)`
`lim_(hto0) {2(-h)-|-h|}=lim_(hto0)(-2h-h) = lim_(hto0) (-3h) =0`
Thus, ` lim_(xto0+) f(x) = lim_(xto0+) f(x)=0and " therefore " , lim_(xto0) f(x)=0`
` lim_(x to 0) f(x) = f(0) =0`
Hence, f(x) is continuous at x =0


Discussion

No Comment Found