InterviewSolution
Saved Bookmarks
| 1. |
Show that the line a2x + ay + 1 = 0 is perpendicular to the line x – ay = 1 for all non-zero real values of a. |
|
Answer» Given: Line a2x + ay + 1 = 0 is perpendicular to the line x – ay = 1 To prove: The line a2x + ay + 1 = 0 is perpendicular to the line x – ay = 1 for all non-zero real values of a. Concept Used: Product of slope of perpendicular line is -1. Explanation: The given lines are a2x + ay + 1 = 0 … (1) x − ay = 1 … (2) Let m1 and m2 be the slopes of the lines (1) and (2). m1m2 = - \(\frac{a^2}{a}\times\frac{1}{a}\) = -1 Hence proved, line a2x + ay + 1 = 0 is perpendicular to the line x− ay = 1 for all non-zero real values of a. |
|