InterviewSolution
Saved Bookmarks
| 1. |
Show that there is no positive integer n for which √(n+1)+√(n-1) is rational number. |
| Answer» Let us assume that there is a positive integer n for {tex}\\sqrt{n-1}+\\sqrt{n+1}{/tex}which is rational and equal to {tex}\\frac pq{/tex}, where p and q are positive integers and (q\xa0{tex}\\neq{/tex}\xa00).{tex}\\sqrt { n - 1 } + \\sqrt { n + 1 } = \\frac { p } { q }{/tex}......(i)or,\xa0{tex}\\frac { q } { p } = \\frac { 1 } { \\sqrt { n - 1 } + \\sqrt { n + 1 } }{/tex}on multiplication of numerator and denominator by\xa0{tex}\\sqrt{n-1}-\\sqrt{n+1}{/tex}\xa0we get{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( \\sqrt { n - 1 } + \\sqrt { n + 1 } ) ( \\sqrt { n - 1 } - \\sqrt { n + 1 } ) }{/tex}{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( n - 1 ) - ( n + 1 ) } = \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { - 2 }{/tex}or,\xa0{tex}\\sqrt { n + 1 } - \\sqrt { n - 1 } = \\frac { 2 q } { p }{/tex} ........(ii)On adding (i) and (ii), we get{tex}2 \\sqrt { n + 1 } = \\frac { p } { q } + \\frac { 2 q } { p } = \\frac { p ^ { 2 } + 2 q ^ { 2 } } { p q }{/tex}{tex}\\sqrt{n+1}\\;=\\frac{p^2+2q^2}{2pq}{/tex}...............(iii)From (i) and (ii),{tex}\\style{font-family:Arial}{\\sqrt{n-1}\\;=\\frac{p^2-2q^2}{2pq}}{/tex}........(iv)In RHS of (iii) and (iv)\xa0{tex}\\frac{p^2+2q^2}{2pq}\\;and\\;\\frac{\\displaystyle p^2-2q^2}{\\displaystyle2pq}\\;are\\;rational\\;number\\;because\\;p\\;and\\;q\\;are\\;positive\\;integers{/tex}But it is possible only when (n + 1) and (n - 1) both are perfect squares.Now n+1-(n-1)=n+1-n+1=2Hence they differ by 2 and two perfect squares never differ by 2.So both (n + 1) and (n -1 ) cannot be perfect squares. Hence there is no positive integer n for which\xa0{tex}\\style{font-family:Arial}{\\sqrt{n-1\\;}+\\sqrt{n+1}}{/tex} is rational | |