1.

सिद्ध कीजिये कि `DeltaABC` समबाहु होगा, यदि A, B तथा C के स्थिति-सदिश क्रमशः `hati+2hatj+3hatk,-hati-hatj+8hatk` तथा `-4hati+4hatj+6hatk` है।

Answer» माना मूलबिन्दु O के सापेक्ष बिन्दुओं A, B तथा C के स्थिति-सदिश क्रमशः `hati+2hatj+3hatk,-hati-hatj+8hatk` तथा `-4hati+4hatj+6hatk` है।
`vec(OA)=hati+2hatj+3hatk, vec(OB)=-hati-hatj+8hatk`
तथा `vec(OC)=-4hati+4hatj+6hatk`
`vec(AB)=vec(OB)-vec(OA)`
`=(-hati-hatj+8hatk)-(hati+2hatj+3hatk)`
`=(-hati-hati)+(-hatj-2hatj)+(8hatk-3hatk)`
`=-2hati-3hatj+5hatk`
`|vec(AB)|=|-2hati-3hatj+5hatk|=sqrt((-2)^(2)+(-3)^(2)+(5)^(2))`
`=sqrt(4+9+25)=sqrt(38)`
`vec(BC)=vec(OC)-vec(OB)`
`=(-4hati+4hatj+6hatk)-(-hati-hatj+8hatk)`
`=(-4hati+hati)+(4hatj+hatj)+(6hatk-8hatk)`
`=-3hati+5hatj-2hatk`
`|vec(BC)|=|-3hati+5hatj-2hatk|`
`=sqrt((-3)^(2)+(5)^(2)+(-2)^(2))`
`=sqrt(9+25+4)=sqrt(38)`
`vec(AC)=vec(OC)-vec(OA)`
`=(-4hati+4hatj+6hatk)-(hati+2hatj+3hatk)`
`=(-4hati-hati)+(4hatj-2hatj)+(6hatk-3hatk)`
`=-5hati+2hatj+3hatk`
`|vec(AC)|=|-5hati+2hatj+3hatk|`
`=sqrt((-5)^(2)+(2)^(2)+(3)^(2))=sqrt(25+4+9)=sqrt(38)`
`because |vec(BC)|=|vec(AC)|=|vec(AB)|`
अतः `DeltaABC` समबाहु त्रिभुज है।


Discussion

No Comment Found

Related InterviewSolutions